Beamline 13-BM / GSECARS-CAT

Scientific focus: Geosciences, environmental science, and soil science

Scientific programs: High-pressure diffraction in diamond-anvil cell, high-pressure diffraction in multianvil press, microspectroscopy and XRF microprobe, and microtomography

Optics & Optical Performance

VG double-crystal monochromator

28 m from source Si(111) or Si(311) crystal water cooling

+15 to +30 mm offset

vertical focusing mirror

45 m from source

Si substrate

Pt, Rh, Si coatings internal water cooling

elliptically bent flat geometry

0-5 mrad grazing angle

6:1 to 3:1 demagnification

small Kirkpatrick-Baez microfocusing mirrors

Experiment Stations

13-BM-A

white beam first optics enclosure

13-BM-B

white beam second optics enclosure

13-BM-C (future addition)

- monochromatic beam station
- diffraction
- tomography

13-BM-D

- · white or monochromatic beam station
- multi-anvil press high-pressure diffraction
- tomography
- microprobe
- microspectroscopy
- microcrystal diffraction

Detectors

- Canberra 16-element Ge detectors (two)
- Bruker 2K and 1500 CCD detectors
- Canberra single-element Ge and Si(Li) detectors
- Princeton Instruments visible light CCD cameras (four)

Beamline Controls and Data Acquisition

- Windows NT workstations running EPICS with VME
- SPEC, IDL, Bruker SMART and GADDS
- Princeton Instruments WinView and WinSpec

Beamline Support Equipment/Facilities

- 250-ton multi-anvil press with DIA and T-cup tooling (13-BM-D)
- Laser Raman system in support laboratory

Bending Magnet Source Characteristics (nominal)

source	APS bending magnet
critical energy	19.51 keV
on-axis peak brilliance at 16.3 keV	$\begin{array}{c} 2.9 \times 10^{15} \\ \text{ph/sec/mrad}\%\text{mm}\%0.1\%\text{bw} \end{array}$
on-axis peak angular flux at 16.3 keV	9.6 x 10 ¹³ ph/sec/mrad ² /0.1%bw
on-axis peak horizontal angular flux at 5.6 keV	1.6×10^{13} ph/sec/mradh/0.1%bw
source size at critical energy $\sum_{x} \sum_{y}$	$145~\mu{ m m}$ $36~\mu{ m m}$
source divergence at critical energy $\sum_{x'} x'$	$6~\mathrm{mrad}$ $47~\mu\mathrm{rad}$